Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper puts the case for the hippocampus as being central to the neuropathology and pathophysiology of schizophrenia. The evidence comes from a range of approaches, both in vivo (neuropsychology, structural and functional imaging) and post mortem (histology, morphometry, gene expression, and neurochemistry). Neuropathologically, the main positive findings concern neuronal morphology, organisation, and presynaptic and dendritic parameters. The results are together suggestive of an altered synaptic circuitry or "wiring" within the hippocampus and its extrinsic connections, especially with the prefrontal cortex. These changes plausibly represent the anatomical component of the aberrant functional connectivity that underlies schizophrenia. Glutamatergic pathways are prominently but not exclusively affected. Changes appear somewhat greater in the left hippocampus than the right, and CA1 is relatively uninvolved compared to other subfields. Hippocampal pathology in schizophrenia may be due to genetic factors, aberrant neurodevelopment, and/or abnormal neural plasticity; it is not due to any recognised neurodegenerative process. Hippocampal involvement is likely to be associated with the neuropsychological impairments of schizophrenia rather than with its psychotic symptoms.

Original publication

DOI

10.1007/s00213-003-1761-y

Type

Journal article

Journal

Psychopharmacology (Berl)

Publication Date

06/2004

Volume

174

Pages

151 - 162

Keywords

Animals, Functional Laterality, Glutamic Acid, Hippocampus, Humans, Neurons, Schizophrenia, Synapses