Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>Under typical daytime light levels, the human pupillary light response (PLR) is driven by the activity of the L, M, and S cones, and melanopsin expressed in the so-called intrinsically photosensitive retinal ganglion cells (ipRGCs). However, the importance of each of these photoreceptive mechanisms in defining pupil size under real-world viewing conditions remains to be established. To address this question, we embedded photoreceptor-specific modulations in a movie displayed using a novel projector-based five-primary spatial stimulation system, which allowed for the precise control of photoreceptor activations in time and space. We measured the pupillary light response in eleven observers, who viewed short cartoon movies which contained hidden low-frequency (0.25 Hz) silent-substitution modulations of the L, M and S cones (no stimulation of melanopsin), melanopsin (no stimulation of L, M and S cones), both L, M, and S cones and melanopsin or no modulation at all. We find that all photoreceptors active at photopic light levels regulate pupil size under this condition. Our data imply that embedding modulations in photoreceptor contrast could provide a method to manipulate key adaptive aspects of the human visual system in everyday, real-world activities such as watching a movie.</jats:p>

Original publication

DOI

10.1101/440040

Type

Journal article

Publisher

Cold Spring Harbor Laboratory

Publication Date

11/10/2018