Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis.
Wheeler E., Leong A., Liu C-T., Hivert M-F., Strawbridge RJ., Podmore C., Li M., Yao J., Sim X., Hong J., Chu AY., Zhang W., Wang X., Chen P., Maruthur NM., Porneala BC., Sharp SJ., Jia Y., Kabagambe EK., Chang L-C., Chen W-M., Elks CE., Evans DS., Fan Q., Giulianini F., Go MJ., Hottenga J-J., Hu Y., Jackson AU., Kanoni S., Kim YJ., Kleber ME., Ladenvall C., Lecoeur C., Lim S-H., Lu Y., Mahajan A., Marzi C., Nalls MA., Navarro P., Nolte IM., Rose LM., Rybin DV., Sanna S., Shi Y., Stram DO., Takeuchi F., Tan SP., van der Most PJ., Van Vliet-Ostaptchouk JV., Wong A., Yengo L., Zhao W., Goel A., Martinez Larrad MT., Radke D., Salo P., Tanaka T., van Iperen EPA., Abecasis G., Afaq S., Alizadeh BZ., Bertoni AG., Bonnefond A., Böttcher Y., Bottinger EP., Campbell H., Carlson OD., Chen C-H., Cho YS., Garvey WT., Gieger C., Goodarzi MO., Grallert H., Hamsten A., Hartman CA., Herder C., Hsiung CA., Huang J., Igase M., Isono M., Katsuya T., Khor C-C., Kiess W., Kohara K., Kovacs P., Lee J., Lee W-J., Lehne B., Li H., Liu J., Lobbens S., Luan J., Lyssenko V., Meitinger T., Miki T., Miljkovic I., Moon S., Mulas A., Müller G., Müller-Nurasyid M., Nagaraja R., Nauck M., Pankow JS., Polasek O., Prokopenko I., Ramos PS., Rasmussen-Torvik L., Rathmann W., Rich SS., Robertson NR., Roden M., Roussel R., Rudan I., Scott RA., Scott WR., Sennblad B., Siscovick DS., Strauch K., Sun L., Swertz M., Tajuddin SM., Taylor KD., Teo Y-Y., Tham YC., Tönjes A., Wareham NJ., Willemsen G., Wilsgaard T., Hingorani AD., Egan J., Ferrucci L., Hovingh GK., Jula A., Kivimaki M., Kumari M., Njølstad I., Palmer CNA., Serrano Ríos M., Stumvoll M., Watkins H., Aung T., Blüher M., Boehnke M., Boomsma DI., Bornstein SR., Chambers JC., Chasman DI., Chen Y-DI., Chen Y-T., Cheng C-Y., Cucca F., de Geus EJC., Deloukas P., Evans MK., Fornage M., Friedlander Y., Froguel P., Groop L., Gross MD., Harris TB., Hayward C., Heng C-K., Ingelsson E., Kato N., Kim B-J., Koh W-P., Kooner JS., Körner A., Kuh D., Kuusisto J., Laakso M., Lin X., Liu Y., Loos RJF., Magnusson PKE., März W., McCarthy MI., Oldehinkel AJ., Ong KK., Pedersen NL., Pereira MA., Peters A., Ridker PM., Sabanayagam C., Sale M., Saleheen D., Saltevo J., Schwarz PE., Sheu WHH., Snieder H., Spector TD., Tabara Y., Tuomilehto J., van Dam RM., Wilson JG., Wilson JF., Wolffenbuttel BHR., Wong TY., Wu J-Y., Yuan J-M., Zonderman AB., Soranzo N., Guo X., Roberts DJ., Florez JC., Sladek R., Dupuis J., Morris AP., Tai E-S., Selvin E., Rotter JI., Langenberg C., Barroso I., Meigs JB.
Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 × 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI 0.55-0.74) of African American adults with T2D to remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants.As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.