Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Current molecular genomic approaches to human genetic disorders have led to an explosion in the identification of the genes and their encoded proteins responsible for these disorders. The identification of the gene altered by mutations in Duchenne and Becker muscular dystrophy was one of the earliest examples of this paradigm. The nearly 30 years of research partly outlined here exemplifies the road that similar current gene discovery protocols will be expected to travel, albeit much more rapidly owing to improved diagnosis of genetic disorders and an understanding of the spectrum of mutations thought to cause them. The identification of the protein dystrophin has led to a new understanding of the muscle cell membrane and the proteins involved in membrane stability, as well as new candidate genes for additional forms of muscular dystrophy. Animal models identified with naturally occurring mutations and developed by genetic manipulation have furthered the understanding of disease progression and underlying pathology. The biochemistry and molecular analysis of patient samples have led to the different dystrophin-dependent and -independent therapies that are currently close to or in human clinical trials. The lessons learned from decades of research on dystrophin have benefited the field of human genetics.

Original publication

DOI

10.1146/annurev-genom-090314-025003

Type

Journal article

Journal

Annu Rev Genomics Hum Genet

Publication Date

2015

Volume

16

Pages

281 - 308

Keywords

DMD, clinical trials, muscle, muscular dystrophy, therapy, Animals, Clinical Trials as Topic, Disease Models, Animal, Dystrophin, Genetic Therapy, Humans, Molecular Targeted Therapy, Muscular Dystrophies, Mutation, Phosphoric Diester Hydrolases, Steroids, Utrophin