Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Type 2 diabetes (T2D) is a devastating chronic disease marked by pancreatic β cell dysfunction and insulin resistance, whose pathophysiology remains poorly understood. HNF1A, which encodes transcription factor hepatocyte nuclear factor-1 alpha, is the most commonly mutated gene in Mendelian diabetes. HNF1A also carries loss- or gain-of-function coding variants that respectively predispose to or protect against polygenic T2D. The mechanisms underlying HNF1A-deficient diabetes, however, are still unclear. We now demonstrate that diabetes arises from β cell-autonomous defects and identify direct β cell genomic targets of HNF1A. This uncovered a regulatory axis where HNF1A controls transcription of A1CF, which orchestrates an RNA splicing program encompassing genes that regulate β cell function. This HNF1A-A1CF transcription-splicing axis is suppressed in β cells from T2D individuals, while genetic variants reducing pancreatic islet A1CF are associated with increased glycemia and T2D susceptibility. Our findings, therefore, identify a linear hierarchy that coordinates β cell-specific transcription and splicing programs and link this pathway to T2D pathogenesis.

Original publication

DOI

10.1016/j.cmet.2025.07.007

Type

Journal article

Journal

Cell Metabolism

Publication Date

01/01/2025