Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Technological advancements of the past decade have transformed cancer research, improving patient survival predictions through genotyping and multimodal data analysis. However, there is no comprehensive machine-learning pipeline for comparing methods to enhance these predictions. To address this, a versatile pipeline using The Cancer Genome Atlas (TCGA) data was developed, incorporating various data modalities such as transcripts, proteins, metabolites, and clinical factors. This approach manages challenges like high dimensionality, small sample sizes, and data heterogeneity. By applying different feature extraction and fusion strategies, notably late fusion models, the effectiveness of integrating diverse data types was demonstrated. Late fusion models consistently outperformed single-modality approaches in TCGA lung, breast, and pan-cancer datasets, offering higher accuracy and robustness. This research highlights the potential of comprehensive multimodal data integration in precision oncology to improve survival predictions for cancer patients. The study provides a reusable pipeline for the research community, suggesting future work on larger cohorts.

Original publication

DOI

10.1038/s41698-025-00917-6

Type

Journal article

Journal

NPJ Precis Oncol

Publication Date

06/05/2025

Volume

9