Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this report we have characterized the photopigments mediating circadian phase shifts in retinal degenerate (rd) mice. In aged rd/rd mice, which lack detectable opsin, high performance liquid chromatography (HPLC) was used to quantify the photopigment chromophore 11-cis-retinaldehyde. This chromophore was photoisomerized in whole eyes, suggesting the presence of a functional opsin-based photopigment system. We also analyzed the spectral sensitivity of phase shifting circadian locomotor rhythms. Our data implicate a photopigment that is consistent with the involvement of the middle wavelength-sensitive cone photoreceptors (M-cones; lambda(max) = 511 nm) found in the mouse retina. In addition, discrete near-ultraviolet (UV-A) pulses were capable of eliciting large phase shifts in circadian locomotor activity rhythms. This result is consistent with the involvement of the short wavelength-sensitive cone photoreceptors (UV-cones; lambda(max) = 359 nm) in photoentrainment. Collectively, these data suggest that both cone classes of the mouse may mediate the photic regulation of circadian rhythms. If this is the case, circadian sensitivity can be maintained by very few degenerate cones. Alternatively, an unknown class of ocular photoreceptor may fulfill this function.

Type

Journal article

Journal

Brain Res

Publication Date

02/10/1995

Volume

694

Pages

183 - 190

Keywords

Animals, Behavior, Animal, Chromatography, High Pressure Liquid, Circadian Rhythm, Eye, Isomerism, Light, Mice, Mice, Inbred C57BL, Photoreceptor Cells, Retinal Cone Photoreceptor Cells, Retinal Degeneration, Retinoids, Ultraviolet Rays