Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The behavior of mammals is characterized by a 24-h cycle of rest and activity which is a fundamental adaption to the solar cycle of light and darkness. The pacemaker of this circadian clock is localized in the ventral part of the hypothalamus, the so-called suprachiasmatic nuclei (SCN), and is entrained by light signals mediated by the eye. The eye is directly connected via the retinohypothalamic tract (RHT) to the SCN. Light that reaches the retina elicits glutamate release at the synaptic terminals of the RHT and influences the neurons in the SCN in a manner that alters the behavioral state of the animal. A light pulse that reaches the retina at the beginning of the night elicits a delay of the clock phase, whereas a light pulse that reaches the retina at the end of the dark period leads to an advance of the clock phase. This advance or delay can be quantified by measuring the change in onset of wheel-running activity. Such measurements have, and continue to provide, a remarkably powerful assay of how light is detected and transduced to regulate circadian rhythms. The methods used for such measurements in mice are described in the following article.


Journal article



Publication Date





465 - 477


Animals, Circadian Rhythm, Housing, Animal, Mice, Mice, Mutant Strains, Retina