Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The endogenous circadian clock of mammals retains synchrony with the external light:dark cycle through ocular photoreceptors. To date the identity of the photoreceptors responsible for mediating this response is unknown. This review outlines attempts using transgenic mouse models to address this deficit. Mice bearing specific inherited lesions of both rod and cone photoreceptors retain circadian photosensitivity as assessed by photoentrainment of behavioural rhythms and the light-induced suppression of pineal melatonin. These findings indicate that as yet unidentified non-rod, non-cone ocular photoreceptors are capable of contributing to circadian light responses. Nevertheless, the possibility that circadian photosensitivity is the responsibility of multiple photoreceptor classes including both rod/cone and novel photopigments remains. There is some indirect evidence in favour of this hypothesis. A definitive resolution of this issue is likely to employ comparisons of circadian action spectra in wild type and retinally degenerate mice.

Type

Journal article

Journal

Behav Brain Res

Publication Date

01/11/2001

Volume

125

Pages

97 - 102

Keywords

Animals, Circadian Rhythm, Melatonin, Mice, Mice, Transgenic, Phenotype, Photoreceptor Cells, Pineal Gland, Retinal Degeneration, Retinal Pigments, Suprachiasmatic Nucleus