Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cataract surgery was revolutionised by the introduction of modern intraocular lenses in the late 1940's. By the late 1960's to 1970's evidence had emerged that short-wavelength light caused phototoxicity at the retina and retinal pigment epithelium. By the early 1980's ultraviolet filters had been incorporated into intraocular lenses. This caused intense controversy, as there was concern that the UV-filtering chromophore might leach out into the eye causing toxicity. With the arrival of blue-filtering intraocular lenses (BFIOLs) in 1990's, a further debate was ignited as to their safety and potential disadvantages. Selecting the optimal performing intraocular lens to obtain the best visual performance with the fewest potential drawbacks has become complex and challenging for cataract surgeons and their patients with the wide choice of lenses available. Choosing a personalised lens to address astigmatism, presbyopia, spherical aberration, chromatic aberration, and potentially to shield the retina from short-wavelength light is now possible. The potential benefits and possible side effects of these different innovations emphasise the importance of assessing the evidence for their clinical utility, allowing the surgeon and the patient to weigh-up the risk benefit ratio and make an informed decision. The BFIOLs were developed to reduce cyanopsia, address chromatic aberration, and improve contrast sensitivity in different lighting conditions, as well as to prevent short-wavelength light reaching the retina thus potentially reducing the risk of developing age-related macular degeneration. Further design development of the BFIOLs was to mimic the natural crystalline lens absorption and transmittance properties in adulthood. Multiple publications have reported on the potential benefits and pitfalls of implanting a blue-filtering lens. The potential disadvantages raised in the literature over the last 25 years since their introduction, regarding compromise of visual function and disruption of the circadian system, have been largely dispelled. The clear benefits of protecting the retina from short-wavelength light make a BFIOLs a sensible choice. The purpose of this article presented at the Cambridge symposium 2015 is to review the literature on this subject.

Original publication

DOI

10.1038/eye.2015.267

Type

Journal article

Journal

Eye (Lond)

Publication Date

02/2016

Volume

30

Pages

215 - 221

Keywords

Cataract Extraction, Coated Materials, Biocompatible, Filtration, Humans, Lens Implantation, Intraocular, Lenses, Intraocular, Prosthesis Design, Radiation Injuries, Radiation Protection, Ultraviolet Rays, Vision Disorders