Cardiac α-actin over-expression therapy in dominant ACTA1 disease.
Ravenscroft G., McNamara E., Griffiths LM., Papadimitriou JM., Hardeman EC., Bakker AJ., Davies KE., Laing NG., Nowak KJ.
More than 200 mutations in the skeletal muscle α-actin gene (ACTA1) cause either dominant or recessive skeletal muscle disease. Currently, there are no specific therapies. Cardiac α-actin is 99% identical to skeletal muscle α-actin and the predominant actin isoform in fetal muscle. We previously showed cardiac α-actin can substitute for skeletal muscle α-actin, preventing the early postnatal death of Acta1 knock-out mice, which model recessive ACTA1 disease. Dominant ACTA1 disease is caused by the presence of 'poison' mutant actin protein. Experimental and anecdotal evidence nevertheless indicates that the severity of dominant ACTA1 disease is modulated by the relative amount of mutant skeletal muscle α-actin protein present. Thus, we investigated whether transgenic over-expression of cardiac α-actin in postnatal skeletal muscle could ameliorate the phenotype of mouse models of severe dominant ACTA1 disease. In one model, lethality of ACTA1(D286G). Acta1(+/-) mice was reduced from ∼59% before 30 days of age to ∼12%. In the other model, Acta1(H40Y), in which ∼80% of male mice die by 5 months of age, the cardiac α-actin transgene did not significantly improve survival. Hence cardiac α-actin over-expression is likely to be therapeutic for at least some dominant ACTA1 mutations. The reason cardiac α-actin was not effective in the Acta1(H40Y) mice is uncertain. We showed that the Acta1(H40Y) mice had endogenously elevated levels of cardiac α-actin in skeletal muscles, a finding not reported in dominant ACTA1 patients.