Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Delayed cerebral ischaemia (DCI) is the major cause of mortality and morbidity following aneurysmal subarachnoid haemorrhage (SAH). Recent experimental evidence from animal models has highlighted the need for non-invasive and robust measurements of brain tissue perfusion in patients in order to help understand the pathophysiology underlying DCI. Quantitative, serial, whole-brain cerebral perfusion measurements were obtained with pseudo-continuous arterial spin labelling (PCASL) magnetic resonance imaging (MRI) in six SAH patients acutely following endovascular coiling. This technique requires no injected contrast or radioactive isotopes. MRI scanning was well tolerated. Artefact from endovascular coils was minimal. PCASL MRI was able to detect time-dependent and patient-specific changes in voxel-wise and regional cerebral blood flow. These changes reflected changes in clinical condition. Data obtained in healthy controls using the same experimental protocol confirm the reliability and reproducibility of these results. This is the first study to use whole-brain, quantitative PCASL to identify time-dependent changes in cerebral blood flow at the tissue level in the acute period following SAH. This technique has the potential to better understand changes in cerebral pathophysiology as a consequence of aneurysm rupture.

Original publication

DOI

10.1007/s12975-013-0269-y

Type

Journal article

Journal

Transl Stroke Res

Publication Date

12/2013

Volume

4

Pages

710 - 718

Keywords

Adult, Aged, Brain, Brain Ischemia, Case-Control Studies, Cerebrovascular Circulation, Feasibility Studies, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Reproducibility of Results, Spin Labels, Subarachnoid Hemorrhage, Time Factors