Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Two isozymes of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) interconvert active cortisol and inactive cortisone. 11 beta-HSD2 (renal) acts only as a dehydrogenase, converting cortisol to cortisone. 11 beta-HSD1 (liver) is a bi-directional enzyme in cell homogenates, whereas in intact cells it typically displays oxo-reductase activity, generating cortisol from cortisone. We recently established that cortisone reductase deficiency is a digenic disease requiring mutations in both the gene encoding 11 beta-HSD1 and in the gene for a novel enzyme located within the lumen of the endoplasmic reticulum (ER), hexose-6-phosphate dehydrogenase (H6PDH). This latter enzyme generates NADPH, the co-factor required for oxo-reductase activity. Therefore, we hypothesized that H6PDH expression may be an important determinant of 11 beta-HSD1 oxo-reductase activity. Transient transfection of chinese hamster ovary (CHO) cells with 11 beta-HSD1 resulted in the appearance of both oxo-reductase and dehydrogenase activities in intact cells. Co-transfection of 11 beta-HSD1 with H6PDH increased oxo-reductase activity whilst virtually eliminating dehydrogenase activity. In contrast, H6PDH had no effect on reaction direction of 11 beta-HSD2, nor did the cytosolic enzyme, glucose-6-phosphate dehydrogenase (G6PD) affect 11 beta-HSD1 oxo-reductase activity. Conversely in HEK 293 cells stably transfected with 11 beta-HSD1 cDNA, transfection of an H6PDH siRNA reduced 11 beta-HSD1 oxo-reductase activity whilst simultaneously increasing 11 beta-HSD1 dehydrogenase activity. In human omental preadipocytes obtained from 15 females of variable body mass index (BMI), H6PDH mRNA levels positively correlated with 11 beta-HSD1 oxo-reductase activity, independent of 11 beta-HSD1 mRNA levels. H6PDH expression increased 5.3-fold across adipocyte differentiation (P < 0.05) and was associated with a switch from 11 beta-HSD1 dehydrogenase to oxo-reductase activity. In conclusion, H6PDH is a crucial determinant of 11 beta-HSD1 oxo-reductase activity in intact cells. Through its interaction with 11 beta-HSD1, H6PDH may represent a novel target in the pathogenesis and treatment of obesity.

Original publication




Journal article


J Mol Endocrinol

Publication Date





675 - 684


11-beta-Hydroxysteroid Dehydrogenase Type 1, Adult, Animals, Base Sequence, Blotting, Western, CHO Cells, Carbohydrate Dehydrogenases, Cricetinae, DNA Primers, Female, Humans, Polymerase Chain Reaction, RNA, Messenger, RNA, Small Interfering