Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND AND PURPOSE: Although knowledge concerning cortical reorganization related to upper limb function after ischemic stroke is growing, similar data for lower limb movements are limited. Previous studies with hand movement suggested increasing recruitment of motor areas in the unlesioned hemisphere with increasing disability. We used ankle movement as a lower limb analog to test for similarities and differences in recovery patterns. METHODS: Eighteen subjects were selected with chronic residual gait impairment due to a single subcortical ischemic stroke. Functional MRI scans were obtained at 3.0 T during active and passive ankle dorsiflexion in the patients (8 females, 10 males; mean age, 59.9+/-13.5 years; range, 32 to 74 years) and 18 age-matched healthy control subjects. RESULTS: We observed substantial neocortical activity associated with foot movement both in the patients with stroke and in the healthy control subjects. Our primary finding was increased cortical activation with increasing functional impairment. The extent of activation (particularly in the primary sensorimotor cortex and the supplementary motor area of the unlesioned hemisphere) increased with disability. The changes were most prominent with the active movement task. CONCLUSIONS: Using ankle movement, we observed increased activation in the unlesioned hemisphere associated with worse function of the paretic leg, consistent with studies on movement of paretic upper limbs. We interpret this finding as potentially adaptive recruitment of undamaged ipsilateral motor control pathways from the supplementary motor area and (possibly maladaptive) disinhibition of the ipsilateral sensorimotor cortex.

Original publication

DOI

10.1161/STROKEAHA.107.501999

Type

Journal article

Journal

Stroke

Publication Date

05/2008

Volume

39

Pages

1507 - 1513

Keywords

Adult, Aged, Brain Mapping, Corpus Callosum, Efferent Pathways, Female, Functional Laterality, Gait Disorders, Neurologic, Humans, Leg, Magnetic Resonance Imaging, Male, Middle Aged, Motor Cortex, Muscle, Skeletal, Neural Inhibition, Neuronal Plasticity, Paresis, Recovery of Function, Stroke