GluR-A-dependent synaptic plasticity is required for the temporal encoding of nonspatial information.
Reisel D., Bannerman DM., Deacon RMJ., Sprengel R., Seeburg PH., Rawlins JNP.
Four related experiments studied operant performance of mice on differential reinforcement of low rates of responding (DRL) paradigms. Experiment 1 showed that excitotoxic hippocampal lesions impaired performance of a 10-s DRL schedule (DRL-10). Experiments 2 and 3 showed that GluR-A AMPA receptor subunit knockout mice, which are deficient in CA3-CA1 long-term potentiation (LTP), were markedly impaired at 15 s (DRL-15), but less impaired at DRL-10. Experiment 4 compared DRL-15 performance in mice from the 2 strains from which the GluR-A colony was derived and showed that they did not differ. The results show that GluR-A-containing AMPA receptors are required for normal performance on hippocampus-dependent, nonspatial working memory tasks, consistent with a role for GluR-A in the temporal encoding (what happened when) of nonspatial information.