Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Gene-environment interactions in the postnatal period have a long-term impact on neurodevelopment. To effectively assess neurodevelopment in the mouse, we developed a behavioural pipeline that incorporates several validated behavioural tests to measure translationally relevant milestones of behaviour in mice. The behavioral phenotype of 1060 wild type and genetically-modified mice was examined followed by structural brain imaging at 4 weeks of age. The influence of genetics, sex, and early life stress on behaviour and neuroanatomy was determined using traditional statistical and machine learning methods. Analytical results demonstrated that neuroanatomical diversity was primarily associated with genotype whereas behavioural phenotypic diversity was observed to be more susceptible to gene-environment variation. We describe a standardized mouse phenotyping pipeline, termed the Developmental Behavioural Milestones (DBM) Pipeline released alongside the 1000 Mouse Developmental Behavioural Milestones (1000 Mouse DBM) database to institute a novel framework for reproducible interventional neuroscience research.

Original publication

DOI

10.1186/s12993-024-00261-y

Type

Journal

Behav Brain Funct

Publication Date

02/01/2025

Volume

21

Keywords

Early life stress, Machine learning, Neurodevelopment, Random forest, Structural MRI, Animals, Mice, Brain, Behavior, Animal, Male, Female, Gene-Environment Interaction, Phenotype, Mice, Inbred C57BL, Genotype