Nonlinear time-series approaches in characterizing mood stability and mood instability in bipolar disorder.
Bonsall MB., Wallace-Hadrill SMA., Geddes JR., Goodwin GM., Holmes EA.
Bipolar disorder is a psychiatric condition characterized by episodes of elevated mood interspersed with episodes of depression. While treatment developments and understanding the disruptive nature of this illness have focused on these episodes, it is also evident that some patients may have chronic week-to-week mood instability. This is also a major morbidity. The longitudinal pattern of this mood instability is poorly understood as it has, until recently, been difficult to quantify. We propose that understanding this mood variability is critical for the development of cognitive neuroscience-based treatments. In this study, we develop a time-series approach to capture mood variability in two groups of patients with bipolar disorder who appear on the basis of clinical judgement to show relatively stable or unstable illness courses. Using weekly mood scores based on a self-rated scale (quick inventory of depressive symptomatology-self-rated; QIDS-SR) from 23 patients over a 220-week period, we show that the observed mood variability is nonlinear and that the stable and unstable patient groups are described by different nonlinear time-series processes. We emphasize the necessity in combining both appropriate measures of the underlying deterministic processes (the QIDS-SR score) and noise (uncharacterized temporal variation) in understanding dynamical patterns of mood variability associated with bipolar disorder.