Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In addition to rods and cones of the outer retina, a third class of photoreceptive cell has recently been described in the inner retina of mammals. These intrinsically photosensitive retinal ganglion cells (ipRGCs) have been shown to relay luminance information to the mammalian brain. In addition to their intrinsic photosensitivity, the function of ipRGCs may also be modulated by signals from within the retina itself. Such signals may emanate from classical photoreceptors in the outer retina or from the circadian activity of adjacent inner retinal neurones. Prime candidates for the latter are the retinal dopamine neurones which ramify at the border of the inner plexiform and inner nuclear layers. In order to investigate the nature of any interaction between dopamine and ipRGC populations in normal retina and to assess the impact of outer retinal degeneration on this interrelationship, we examined the retinae of normal and RCS dystrophic rats. We report a direct interaction between the dendrites of ipRGCs and dopaminergic neurones which is conserved across species. Triple immunolabelling using synaptic markers provides evidence for the unidirectionality of information transfer between the two cell types, with processes of ipRGCs being directly adjacent to sites of dopamine release. This fundamental architectural feature of the mammalian retina appears resistant to degeneration of classical photoreceptors and may provide the anatomical substrate by which dopamine cells influence the physiology of central circadian targets in the brain.

Original publication




Journal article


Exp Neurol

Publication Date





26 - 35


Adult, Animals, Cell Communication, Dendrites, Dopamine, Humans, Middle Aged, Rats, Rats, Inbred Strains, Retina, Retinal Degeneration, Rod Opsins, Synaptosomal-Associated Protein 25, Tyrosine 3-Monooxygenase, Vesicular Monoamine Transport Proteins