Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The gene loci for adrenal hypoplasia congenita (AHC) and glycerol kinase deficiency (GK) map in Xp21 distal to Duchenne muscular dystrophy (DMD), and proximal to DXS28 (C7), by analysis of patient deletions. We have constructed a yeast artificial chromosome (YAC) contig encompassing a 1.2 Mb region extending distally from DMD, and containing DXS708 (JC-1), the distal junction clone of a patient with GK and DMD. A pulsed-field gel electrophoresis map of the YAC contig identified 3 potential CpG islands. Whole YAC hybridization identified cosmids both for construction of cosmid contigs, and isolation of single copy probes. Thirteen new single copy probes and DXS28 and DXS708 were hybridized on a panel of patients; the deletion mapping indicates that the YAC contig contains both GK and at least part of AHC, and together with the physical map defines a GK critical region of 50-250 kb. In one AHC patient with a cytogenetically detectable deletion we used the new probes to characterize a complex double deletion. Non-overlapping deletions observed in other unrelated AHC patients indicate that the AHC gene is large, extending over at least 200-500 kb. This mapping provides the basis for the identification of the AHC and GK genes.

Original publication

DOI

10.1093/hmg/1.8.579

Type

Journal article

Journal

Hum Mol Genet

Publication Date

11/1992

Volume

1

Pages

579 - 585

Keywords

Adrenal Gland Diseases, Chromosome Deletion, Chromosome Mapping, Chromosomes, Fungal, Cosmids, Deficiency Diseases, Genome, Human, Genomic Library, Glycerol Kinase, Humans, Male, Polymerase Chain Reaction, Repetitive Sequences, Nucleic Acid, X Chromosome