Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Our visual perception of the world - seeing form and colour or navigating the environment - depends on the interaction of light and matter in the environment. Light also has a more fundamental role in regulating rhythms in physiology and behaviour, as well as in the acute secretion of hormones such as melatonin and changes in alertness, where light exposure at short-time, medium-time and long-time scales has different effects on these visual and non-visual functions. Yet patterns of light exposure in the real world are inherently messy: we move in and out of buildings and are therefore exposed to mixtures of artificial and natural light, and the physical makeup of our environment can also drastically alter the spectral composition and spatial distribution of the emitted light. In spatial vision, the examination of natural image statistics has proven to be an important driver in research. Here, we expand this concept to the spectral domain and develop the concept of the 'spectral diet' of humans.

Original publication

DOI

10.1016/j.cobeha.2019.06.006

Type

Journal article

Journal

Curr Opin Behav Sci

Publication Date

12/2019

Volume

30

Pages

80 - 86