Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Genome-wide association studies have identified a region on chromosome 9p that is associated with coronary artery disease (CAD). The region is also associated with type 2 diabetes (T2D), a risk factor for CAD, although different SNPs were reported to be associated to each disease in separate studies. We have undertaken a case-control study in 4251 CAD cases and 4443 controls in four European populations using previously reported ('literature') and tagging SNPs. We replicated the literature SNPs (P = 8x10(-13); OR = 1.29; 95% CI: 1.20-1.38) and showed that the strong consistent association detected by these SNPs is a consequence of a 'yin-yang' haplotype pattern spanning 53 kb. There was no evidence of additional CAD susceptibility alleles over the major risk haplotype. CAD patients without myocardial infarction (MI) showed a trend towards stronger association than MI patients. The CAD susceptibility conferred by this locus did not differ by sex, age, smoking, obesity, hypertension or diabetes. A simultaneous test of CAD and diabetes susceptibility with CAD and T2D-associated SNPs indicated that these associations were independent of each other. Moreover, this region was not associated with differences in plasma levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, fibrinogen, albumin, uric acid, bilirubin or homocysteine, although the CAD-high-risk allele was paradoxically associated with lower triglyceride levels. A large antisense non-coding RNA gene (ANRIL) collocates with the high-risk haplotype, is expressed in tissues and cell types that are affected by atherosclerosis and is a prime candidate gene for the chromosome 9p CAD locus.

Original publication

DOI

10.1093/hmg/ddm352

Type

Journal article

Journal

Hum Mol Genet

Publication Date

15/03/2008

Volume

17

Pages

806 - 814

Keywords

Base Sequence, Chromosomes, Human, Pair 9, Coronary Artery Disease, DNA Primers, Diabetes Mellitus, Type 2, Genetic Predisposition to Disease, Haplotypes, Humans, Polymorphism, Single Nucleotide, RNA, Untranslated, Reverse Transcriptase Polymerase Chain Reaction, Risk Factors