Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Gliflozins, such as dapagliflozin, belong to a class of drugs that inhibit the sodium-glucose cotransporter 2. Gliflozins have been found to raise glucagon levels, a hormone secreted from pancreatic islet alpha-cells, which can trigger ketosis. However, the precise mechanisms through which gliflozins increase glucagon secretion remain poorly understood. Additionally, gliflozins induce osmotic diuresis, resulting in increased urine volume and plasma osmolality. In this study, we investigated the hypothesis that a compensatory increase in arginine-vasopressin (AVP) mediates dapagliflozin-induced increases in glucagon in vivo. We show that dapagliflozin does not increase glucagon secretion in the perfused mouse pancreas, neither at clinical nor at supra-clinical doses. In contrast, AVP potently increases glucagon secretion. In vivo, dapagliflozin increased plasma glucagon, osmolality, and AVP. An oral load with hypertonic saline amplified dapagliflozin-induced glucagon secretion. Notably, a similar increase in glucagon could also be elicited by dehydration, evoked by 24-hour water restriction. Conversely, blockade of vasopressin 1b receptor signaling, with either pharmacological antagonism or knockout of the receptor, resulted in reduced dapagliflozin-induced glucagon secretion in response to both dapagliflozin and dehydration. Lastly, blocking vasopressin 1b receptor signaling in a mouse model of type 1 diabetes diminished the glucagon-promoting and ketogenic effects of dapagliflozin. Collectively, our data suggest that AVP is an important regulator of glucagon release during both drug-induced and physiological dehydration.

Original publication

DOI

10.1152/ajpendo.00505.2024

Type

Journal

Am J Physiol Endocrinol Metab

Publication Date

18/03/2025

Keywords

AVP, Gliflozins, diabetes, glucagon, vasopressin