Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Inflammation is a significant risk factor for brain injury in the perinatal period. In this study, we tested the hypothesis that activation of peripheral TLR induces inflammation in the brain, including leukocyte trafficking. Postnatal day 8 mice were injected intraperitoneally with a TLR1/2 (Pam3CSK4, P3C), TLR2/6 (FSL-1) or TLR4 (LPS) agonist, and the peripheral and central cytokine and chemokine response was determined. Infiltration of immune cells to the CSF and brain was examined by flow cytometry, and brain permeability was investigated by radioactively labeled sucrose. We report that peripheral administration of P3C to neonatal mice induces significant influx of leukocytes, mainly neutrophils and monocytes, to the CSF and brain. Infiltration of leukocytes was TLR2 and MyD88 dependent, but largely absent after administration of LPS or FSL-1. PC3-mediated accumulation of immune cells in the brain was observed in classic CNS-leukocyte gateways, the subarachnoid space and choroid plexus, as well as in the median eminence. Although P3C and LPS induced a similar degree of peripheral inflammatory responses, P3C provoked a distinct brain chemokine response and increased permeability, in particular, of the blood-CSF barrier. Collectively, our results do not support the hypothesis that TLR activation, in general, induces immune cell infiltration to the brain. Instead, we have discovered a specific TLR2-mediated mechanism of CNS inflammation and leukocyte invasion into the neonatal brain. This interaction between peripheral and central immune responses is to a large extent via the blood-CSF barrier.

Original publication

DOI

10.1189/jlb.3A1215-568R

Type

Journal article

Journal

J Leukoc Biol

Publication Date

01/2017

Volume

101

Pages

297 - 305

Keywords

BBB, BCSFB, PAM3CSK4, inflammation, meningitis, pleocytosis, Animals, Blood-Brain Barrier, Brain, Cell Movement, Cerebrospinal Fluid, Cytokines, Inflammation, Leukocytes, Lipopeptides, Lipopolysaccharides, Mice, Inbred C57BL, Monocytes, Myeloid Differentiation Factor 88, Permeability, Sucrose, Toll-Like Receptor 1, Toll-Like Receptor 2