Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract The G4C2 hexanucleotide repeat expansion (HRE) in C9orf72 is the commonest cause of familial amyotrophic lateral sclerosis (ALS). A number of different methods have been used to generate isogenic control lines using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 and non-homologous end-joining (NHEJ) by deleting the repeat region with the risk of creating indels and genomic instability. In this study we demonstrate complete correction of an induced pluripotent stem cell (iPSC) line derived from a C9orf72 -HRE positive ALS/FTD patient using CRISPR/Cas9 genome editing and homology directed repair (HDR), resulting in replacement of the excised region with a donor template carrying the wild-type repeat size to maintain the genetic architecture of the locus. The isogenic correction of the C9orf72 HRE restored normal expression and methylation at the C9orf72 locus, reduced intron retention in the edited lines, and abolished pathological phenotypes associated with the C9orf72 HRE expansion in iPSC derived motor neurons (iPSMNs). RNA sequencing of the mutant line identified 2220 differentially expressed genes compared to its isogenic control. Enrichment analysis demonstrated an over-representation of ALS relevant pathways, including calcium ion dependent exocytosis, synaptic transport and the KEGG ALS pathway, as well as new targets of potential relevance to ALS pathophysiology. Complete correction of the C9orf72 HRE in iPSMNs by CRISPR/Cas9 mediated HDR provides an ideal model to study the earliest effects of the hexanucleotide expansion on cellular homeostasis and the key pathways implicated in ALS pathophysiology.

Original publication

DOI

10.1101/2019.12.17.864520

Type

Journal article

Publication Date

20/12/2019