The validity of diagnostic labels of autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and obsessive compulsive disorder (OCD) is an open question given the mounting evidence that these categories may not correspond to conditions with distinct etiologies, biologies, or phenotypes. The objective of this study was to determine the agreement between existing diagnostic labels and groups discovered based on a data-driven, diagnosis-agnostic approach integrating cortical neuroanatomy and core-domain phenotype features. A machine learning pipeline, called bagged-multiview clustering, was designed to discover homogeneous subgroups by integrating cortical thickness data and measures of core-domain phenotypic features of ASD, ADHD, and OCD. This study was conducted using data from the Province of Ontario Neurodevelopmental Disorders (POND) Network, a multi-center study in Ontario, Canada. Participants (n = 226) included children between the ages of 6 and 18 with a diagnosis of ASD (n = 112, median [IQR] age = 11.7[4.8], 21% female), ADHD (n = 58, median [IQR] age = 10.2[3.3], 14% female), or OCD (n = 34, median [IQR] age = 12.1[4.2], 38% female), as well as typically developing controls (n = 22, median [IQR] age = 11.0[3.8], 55% female). The diagnosis-agnostic groups were significantly different than each other in phenotypic characteristics (SCQ: χ2(9) = 111.21, p < 0.0001; SWAN: χ2(9) = 142.44, p < 0.0001) as well as cortical thickness in 75 regions of the brain. The analyses revealed disagreement between existing diagnostic labels and the diagnosis-agnostic homogeneous groups (normalized mutual information < 0.20). Our results did not support the validity of existing diagnostic labels of ASD, ADHD, and OCD as distinct entities with respect to phenotype and cortical morphology.
Journal article
Transl Psychiatry
26/11/2019
9