Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Spatially-resolved mapping of rod- and cone-function may facilitate monitoring of macular diseases and serve as a functional outcome parameter. However, mesopic and dark-adapted two-color fundus-controlled perimetry (FCP, also called "microperimetry") constitute laborious examinations. We have devised a machine-learning-based approach to predict mesopic and dark-adapted (DA) retinal sensitivity in eyes with neovascular age-related macular degeneration (nAMD). Extensive psychophysical testing and volumetric multimodal retinal imaging data were acquired including mesopic, DA red and DA cyan FCP, spectral-domain optical coherence tomography and confocal scanning laser ophthalmoscopy infrared reflectance and fundus autofluorescence imaging. With patient-wise leave-one-out cross-validation, we have been able to achieve prediction accuracies of (mean absolute error, MAE [95% CI]) 3.94 dB [3.38, 4.5] for mesopic, 4.93 dB [4.59, 5.27] for DA cyan and 4.02 dB [3.63, 4.42] for DA red testing. Partial addition of patient-specific sensitivity data decreased the cross-validated MAE to 2.8 dB [2.51, 3.09], 3.71 dB [3.46, 3.96], and 2.85 dB [2.62, 3.08]. The most important predictive feature was outer nuclear layer thickness. This artificial intelligence-based analysis strategy, termed "inferred sensitivity", herein, enables to estimate differential effects of retinal structural abnormalities on cone- and rod-function in nAMD, and may be used as quasi-functional surrogate endpoint in future clinical trials.

Original publication

DOI

10.1038/s41598-019-47565-y

Type

Journal article

Journal

Sci Rep

Publication Date

31/07/2019

Volume

9